05 Sep

On-Demand Machine Learning

Achieving Machine Learning Nirvana
By Shailesh Doshi

Recently, I have been in multiple discussions with clients who want to achieve consistent operationalized data science and machine learning pipelines while the business demands more ‘on-demand’ capability.

Often the ‘on-demand’ conversation starts with ‘Apache Spark’ type usage for analytics use cases but then eventually lead to a desire for an enterprise framework with following characteristics:

  • On-demand resource allocation (spin up/recycle)
  • Data as a service (micro service)
  • Cloud native approach/platform
  • Open Source technology/Open Integration approach
  • Ease of development
  • Agile Deployment
  • Efficient data engineering (minimal movement)
  • Multi–tenancy (resource sharing)
  • Containerization (isolation & security)

Given the complex enterprise landscape, the solution is to look at People, Process and Technology, combined to achieve Machine Learning ‘nirvana’. Read More